

Network Analysis: Ivan Romadanov

1. Role and Significance

This analysis assesses Ivan Romadanov as a high-value, first-generation human capital vector, directly linking a foundational Russian academic program with explicit military-propulsion applications to a premier U.S. Department of Energy national laboratory. His career trajectory is not a random migration but a direct pathway for the transfer of specialized knowledge, training, and methodologies between two competing technological ecosystems. His significance lies not only in the expertise he brings to the West but also in his emerging role as a node for training the next generation of American plasma physicists, creating a complex, multi-directional flow of sensitive information.

Romadanov's professional evolution traces a path of high strategic relevance, beginning with his role as a junior researcher on the "Compact Toroid Challenge (CTC)" experiment in Russia. This program was explicitly connected in Russian academic literature to the development of a "thermonuclear motor" (термоядерный мотор), a concept with clear military and aerospace implications. From this foundation, he transitioned to North America, ultimately securing a position as an Associate Research Physicist at the Princeton Plasma Physics Laboratory (PPPL), a central hub of U.S. fusion and plasma research. The timing and nature of this integration are particularly noteworthy. His arrival at PPPL coincides with a period of maturing U.S. interest in compact fusion concepts for both commercial energy, exemplified by ventures like Helion Energy, and clandestine propulsion programs, such as the one attributed to Lockheed Martin Skunk Works®. His specific background in the physics and experimental diagnostics of compact toroids, cultivated within a Russian program with stated propulsion objectives, makes his recruitment by a U.S. national lab a highly efficient vector for knowledge transfer. He is assessed as more than a talented physicist; he is a living repository of the specific experimental techniques and theoretical approaches of the Ryzhkov school of compact toroid physics. His successful integration into PPPL's advanced propulsion and microelectronics research groups makes him a critical node for both intelligence collection and potential counter-intelligence concern.

2. Academic & Mentorship Network

An individual's significance as a knowledge vector is defined by their network of mentors, collaborators, and protégés. This network map reveals the origin, evolution, and potential future dissemination of Romadanov's unique expertise.

Mentors: The Russian Foundation (Ryzhkov & Mozgovoy)

Romadanov's foundational training occurred under the direct mentorship of senior Russian physicists S.V. Ryzhkov of Bauman Moscow State Technical University and A.G. Mozgovoy of the Lebedev Physical Institute. Their collaborative work centered on the "Compact Toroid Challenge (CTC)" experiment, a project designed to improve magnetic flux trapping during the formation of a compact toroid—a critical step for creating stable, high-energy plasmas suitable for fusion or propulsion. The strategic context for this work is provided by intelligence analysis of the Russian advanced propulsion ecosystem, which identifies Ryzhkov's research as the

academic feeder for a state-level effort to develop a "thermonuclear motor". This context elevates Romadanov's early work from a simple academic project to direct participation in a national-level, dual-use technology program. His co-authorship with Ryzhkov and Mozgovoy on papers detailing the CTC experiment confirms his role within this strategically important research group.

Mentors: The North American Transition (Smolyakov)

Romadanov's transition to the West was facilitated through his doctoral studies at the University of Saskatchewan under the guidance of Professor Andrei Smolyakov. Under Smolyakov, his research focus pivoted to the study of turbulent processes, instabilities, and transport phenomena in Hall $E \times B$ discharges. This work is foundational to the physics of electric propulsion systems, particularly Hall thrusters, which are a critical technology for U.S. military and commercial satellites. This phase of his career marks a crucial shift, where his foundational Russian training in pulsed power and compact toroids was augmented with specialized expertise in a technology domain of immediate and high-priority interest to the U.S. aerospace and defense sectors.

Mentors & Senior Collaborators: Integration at PPPL (Raitses, Kaganovich, Diallo)

Upon joining PPPL, Romadanov was integrated into the laboratory's senior research echelons, collaborating with leading figures in U.S. plasma science.

- **Dr. Yevgeny Raitses:** Assessed as his most significant U.S. collaborator and supervisor. Dr. Raitses is a Managing Principal Research Physicist who heads both the Hall Thruster Experiment (HTX) and the Laboratory for Plasma Nanosynthesis (LPN). Romadanov's extensive co-authorship with Raitses on publications related to Hall thrusters, advanced plasma diagnostics, and electron-beam generated plasmas places him at the operational center of PPPL's research into advanced propulsion and plasma-based microelectronics manufacturing.
- **Dr. Igor Kaganovich:** A Principal Research Physicist and Deputy Head of the PPPL Theory Department. Their collaboration on papers involving particle-in-cell (PIC) simulations of plasma transport demonstrates Romadanov's access to and participation in PPPL's most advanced theoretical and computational modeling efforts. This provides him with insight into the predictive capabilities that underpin U.S. plasma research.
- **Dr. Ahmed Diallo:** A former PPPL Principal Research Physicist who now serves as a Program Director at the Advanced Research Projects Agency-Energy (ARPA-E), with a focus on commercial fusion energy. Their co-authorship on papers related to advanced laser-induced fluorescence (LIF) diagnostics represents an extremely high-value link. It connects Romadanov's work directly to the strategic planning and funding apparatus of the U.S. government's high-risk, high-reward energy technology portfolio, providing him with visibility into both the technical state-of-the-art and the strategic direction of U.S. efforts.

Protégés: The Next Generation Pipeline

The most critical long-term risk vector is the transfer of knowledge to the next generation of specialists. Romadanov is now in a position to influence emerging U.S. talent, creating a potential pathway for the outbound transfer of combined Russian and American expertise.

- **Nirbhav Chopra:** A Ph.D. student in the Princeton Program in Plasma Physics, advised by Yevgeny Raitses. Chopra works directly with both Raitses and Romadanov in the Laboratory for Plasma Nanosynthesis and on the Hall Thruster Experiment. His co-authorship with Romadanov on multiple papers confirms a direct mentorship and collaborative relationship, where Romadanov is actively involved in training a U.S. student in the specifics of experimental low-temperature plasma physics.
- **Emma Devin:** A graduate student in the Princeton Program in Plasma Physics, advised by Vinícius Duarte of the PPPL Theory Department. While not a direct co-author, her position within the same specialized graduate program and her affiliation with the theory group, where Kaganovich is a senior figure, places her within Romadanov's sphere of influence. As President of Princeton Women+ in Plasma Physics, she holds a leadership role among her peers, making her a potential node for the broader dissemination of ideas and techniques within the student community.

The following matrix provides a concise summary of Romadanov's most critical professional relationships, mapping the flow of influence and expertise across institutions and technical domains.

Name	Primary Affiliation	Relationship to Romadanov	Technical Focus Area of Collaboration
S.V. Ryzhkov	Bauman Moscow State Technical University	Mentor / Senior Collaborator (Russia)	Compact Toroid (FRC) Physics, Pulsed Power, "Thermonuclear Motor" Concept
A.G. Mozgovoy	Lebedev Physical Institute (RAS)	Senior Collaborator (Russia)	Compact Toroid Challenge (CTC) Experiment, Plasma Formation
Andrei Smolyakov	University of Saskatchewan	Ph.D. Advisor (Canada)	Plasma Instabilities, Turbulent Transport, Hall E×B Discharges
Yevgeny Raitses	Princeton Plasma Physics Laboratory (PPPL)	Supervisor / Senior Collaborator (U.S.)	Hall Thrusters, Electric Propulsion, Plasma Nanosynthesis, Advanced Diagnostics
Igor Kaganovich	Princeton Plasma Physics Laboratory (PPPL)	Senior Collaborator (U.S.)	Plasma Theory, Particle-in-Cell (PIC) Simulations, Anomalous Transport
Ahmed Diallo	ARPA-E / (formerly) PPPL	Senior Collaborator (U.S.)	Advanced Plasma Diagnostics (Laser-Induced Fluorescence)
Nirbhav Chopra	Princeton University / PPPL	Protégé / Junior Collaborator (U.S.)	Low-Temperature Plasmas, Hall Thrusters, Electron-Beam Generated Plasmas

3. Professional & Institutional Network

Primary Affiliation (Russia): Bauman Moscow State Technical University / Lebedev Physical Institute (c. 2013-2014)

Romadanov's early career was defined by his role as a junior researcher on the CTC experiment, a collaboration between two of Russia's premier technical institutions. His publications from this period, including "Formation of a compact toroid for enhanced efficiency" and "Compact toroid challenge experiment with the increasing in the energy input into plasma...," provide a technical window into the capabilities of the Russian program. The experiment successfully achieved a trapped magnetic field of approximately 70% of the primary field, reached plasma densities on the order of 10^{15} cm^{-3} , and utilized capacitor banks storing up to 50 kJ of energy. These parameters demonstrate a credible, hands-on experimental capability in a field with direct and acknowledged propulsion applications, forming the foundation of his specialized expertise.

Primary Affiliation (U.S.): Princeton Plasma Physics Laboratory (2021-Present)

In his current role at PPPL, Romadanov holds the official title of Associate Research Physicist. Organizationally, he is a member of the Discovery Plasma Science Department and is directly affiliated with the Laboratory for Plasma Nanosynthesis (LPN) and the Hall Thruster Experiment (HTX). This placement situates him within the research groups directly managed by his key U.S. collaborator, Dr. Yevgeny Raitses, ensuring his deep integration into the laboratory's most sensitive and strategically relevant low-temperature plasma research.

Secondary Affiliations

Before his appointment at PPPL, Romadanov's career included two key transitional posts in North America. From 2014 to 2019, he was a Ph.D. candidate and later a Postdoctoral Fellow at the University of Saskatchewan's Department of Physics and Engineering Physics, working under Andrei Smolyakov. Following his Ph.D., he held a position as a Post-doctoral Research Associate at the Nova Scotia Health Authority from 2019 to 2021. His work there on developing advanced algorithms for dual-energy X-ray imaging, while seemingly unrelated to plasma physics, demonstrates a high level of expertise in complex signal processing, data analysis, and diagnostic development—a highly transferable skill set directly applicable to the challenges of experimental plasma physics.

Deep Dive at PPPL: Projects and Strategic Relevance

Romadanov's work at PPPL is not abstract academic research; it is directly aligned with critical U.S. national security and economic priorities.

- **Hall Thruster Research:** His collaborative work with Dr. Raitses on instabilities and oscillations (e.g., the breathing mode) in Hall thrusters directly addresses a key challenge for U.S. space capabilities. Hall thrusters are the primary electric propulsion technology for satellite maneuverability, station-keeping, and deep-space missions. Improving their efficiency, power, and operational lifetime is a stated priority for the Department of Defense and NASA to ensure domain dominance in cislunar and geosynchronous space.

- **Electron-Beam Generated Plasmas for Microelectronics:** A significant and growing portion of his research portfolio, conducted with Raitses and his protégé Nirbhav Chopra, is focused on using E×B plasmas for "low-damage (gentle) material processing". This research has direct and immediate applications in the fabrication of next-generation semiconductor chips and quantum information systems. This work is explicitly framed as supporting the U.S. semiconductor industry and aligns with the national strategic objectives of initiatives like the CHIPS and Science Act, which seek to onshore advanced manufacturing and secure the microelectronics supply chain.
- **Advanced Plasma Diagnostics:** Romadanov is actively involved in the development of novel diagnostic techniques, such as a "confocal laser-induced fluorescence diagnostic with an annular laser beam". Advanced diagnostics are a critical enabling technology across all of plasma science. The ability to make more precise, non-invasive measurements of plasma parameters (e.g., ion velocity, temperature, density) is essential for validating theoretical models and advancing the performance of both fusion energy and propulsion systems. His past collaboration in this area with Dr. Ahmed Diallo, who now helps direct high-risk technology funding at ARPA-E, underscores the strategic value the U.S. government places on this specific expertise.

His career path represents a microcosm of the broader strategic competition in dual-use technologies. His foundational training was in a Russian program with a clear military application (propulsion). His current work at a U.S. national laboratory is focused on applications with immense economic and national security implications (space superiority and semiconductor leadership). He serves as a human bridge not just between two competing nations, but between multiple critical domains of great power competition. This makes him an exceptionally valuable individual from an intelligence perspective, as his network and knowledge base sit at the intersection of these critical competitive domains. Any knowledge transfer through him could have cascading effects across multiple strategic sectors.

4. Inferred Knowledge Transfer Vectors

The network map of Ivan Romadanov reveals multiple potential pathways for the transfer of sensitive knowledge and technology. These vectors are multi-directional, representing both a gain for the U.S. research enterprise and a significant counter-intelligence risk.

Vector 1: Inbound Knowledge Transfer (Russia → U.S.)

Romadanov's primary value to the U.S. system is the inbound transfer of knowledge from the Russian academic ecosystem. He brings direct, hands-on experience from the CTC experiment, a program with a different design philosophy and operational history than its Western counterparts. This includes "tacit knowledge"—the unwritten, practical expertise in hardware design, diagnostic implementation, and experimental procedure—that is often more valuable than formal publications. This provides U.S. researchers at PPPL with ground-truth insight into the capabilities, methodologies, and potential blind spots of a competing Russian academic program. Furthermore, his theoretical grounding under the tutelage of Ryzhkov and Smolyakov provides a different pedagogical lineage and problem-solving framework, which can introduce novel perspectives and stimulate innovation within U.S. research efforts.

Vector 2: Outbound Knowledge Transfer Risk (U.S. → Foreign Entities)

The most immediate counter-intelligence concern is the potential for knowledge to flow out of PPPL through Romadanov's enduring professional and personal network. He is now privy to the state-of-the-art in U.S. Hall thruster diagnostics, advanced plasma simulation codes (e.g., PIC models), and novel plasma applications for semiconductor manufacturing. While direct, formal collaboration with his Russian colleagues may have ceased, informal scientific exchange is common and difficult to monitor. The transfer need not be malicious or directed by a foreign intelligence service to be damaging. The simple act of discussing research challenges, sharing pre-publication data, or seeking advice from former mentors could inadvertently reveal sensitive details about the direction, progress, or specific technical hurdles of U.S. government-funded programs.

Vector 3: The Human Capital Nexus (Romadanov as the Bridge)

Romadanov himself represents the most critical and concentrated vector. He is a walking "Rosetta Stone" who is fluent in the technical language, experimental methods, and personnel networks of both the Russian foundational plasma physics community and the elite U.S. national laboratory system. His deep integration at PPPL is the transfer mechanism. By working on U.S. government-funded projects, he gains legitimate access to proprietary information, unique experimental hardware, and pre-publication data across multiple high-priority fields. His value to a foreign intelligence service would be immense, as he provides a single, trusted point of access to research on advanced space propulsion, next-generation microelectronics, and potentially, compact fusion concepts.

Vector 4: Future Commercialization Pathways

While there is no current evidence of Romadanov pursuing private commercial ventures, his research at PPPL is explicitly aimed at applications with massive commercial potential, particularly in the semiconductor and advanced materials industries. This represents a significant future risk vector. National laboratory research frequently leads to patented technologies and the formation of spin-off companies to commercialize them. Should his work contribute to such a venture, Romadanov could become a co-founder or key technical officer. A private entity of this nature could become a target for foreign venture capital investment or, more critically, acquisition. This would provide a legal and commercially plausible mechanism for a foreign adversary to acquire sensitive, U.S.-developed intellectual property related to next-generation microchip manufacturing or other strategic technologies. His work within the Laboratory for Plasma Nanosynthesis (LPN) is a direct indicator of this potential pathway.

Works cited

1. Ivan Romadanov - Google Scholar, <https://scholar.google.ca/citations?user=xv0RuVwAAAAJ&hl=en>
2. Formation of a compact toroid for enhanced efficiency - ResearchGate, https://www.researchgate.net/publication/261017693_Formation_of_a_compact_toroid_for_enhanced_efficiency
3. Ivan Romadanov - Princeton Plasma Physics Laboratory, <https://www.pppl.gov/people/ivan-romadanov>
4. People:Ivan Romadanov, https://nano.pppl.gov/People/ivan_romadanov.html
5. Induction of a Strong Paramagnetic Field Inside Partially Ionized and Weakly Magnetized Plasma by the ExB Drift | Request PDF - ResearchGate, https://www.researchgate.net/publication/261017693_Formation_of_a_compact_toroid_for_enhanced_efficiency

[6. Structure of nonlocal gradient-drift instabilities in Hall \$E \times B\$ discharges - ResearchGate](https://www.researchgate.net/publication/328633335_Induction_of_a_Strong_Paramagnetic_Field_Inside_Partially_Ionized_and_Weakly_Magnetized_Plasma_by_the_ExB_Drift),
[7. Ivan Romadanov - Theoretical Plasma Physics - University of Saskatchewan](https://www.researchgate.net/publication/311667753_Structure_of_nonlocal_gradient-drift_instabilities_in_Hall_E_B_discharges), [8. Structure of nonlocal gradient-drift instabilities in Hall \$E \times B\$ discharges - HTX](https://research-groups.usask.ca/tpp/members/ivan-romadanov.php),
[9. Bio: Yevgeny Raitses - Princeton Collaborative Low Temperature Plasma Research Facility](https://htx.pppl.gov/publication/Journal/Ivan_pop.pdf),
[10. People:Yevgeny Raitses](https://pcrf.princeton.edu/personnel-landing/personnel/bio-yevgeny-raitses/), [11. Yevgeny Raitses - HTX - Princeton Plasma Physics Laboratory](https://nano.pppl.gov/People/yevgeny-raitses.html), [12. Ivan Romadanov Doctor of Philosophy Research Staff Physicist at Princeton University](https://htx.pppl.gov/raitses.html),
[13. People:Igor Kaganovich](https://www.researchgate.net/profile/Ivan-Romadanov),
[14. Igor Kaganovich | Princeton Plasma Physics Laboratory](https://nano.pppl.gov/People/igor-kaganovich.html), [15. Particle-in-cell simulations of anomalous transport in a Penning discharge - AIP Publishing](https://www.pppl.gov/people/igor-kaganovich),
[16. Dr. Ahmed Diallo - ARPA-E - Department of Energy](https://pubs.aip.org/aip/pop/article-abstract/25/6/061201/1027528), [17. Ahmed Diallo | The Institute](https://arpa-e.energy.gov/about/people/dr-ahmed-diallo), [18. Ahmed Diallo - Princeton University](https://www.theinstitute.com/fellow/ahmed-diallo), [19. Ahmed Diallo Ph.D. Physics Staff Research Physicist at Princeton University - ResearchGate](https://diallo.scholar.princeton.edu/),
[20. People:Nirbhav Chopra - Laboratory for Plasma Nanosynthesis & Nanofabrication | Princeton Plasma Physics Lab](https://www.researchgate.net/profile/Ahmed-Diallo),
[21. Nirbhav Chopra - Princeton Program in Plasma Physics](https://nano.pppl.gov/People/nirbhav_chopra.html), [22. HTX People - Princeton Plasma Physics Laboratory](https://plasma.princeton.edu/people/nirbhav-chopra), [23. Ivan Romadanov \(0000-0003-3291-3341\) - ORCID](https://htx.pppl.gov/people.html), [24. Nirbhav Chopra Bachelor of Science PhD Student at Princeton University - ResearchGate](https://orcid.org/0000-0003-3291-3341),
[25. Emma Devin - Princeton Program in Plasma Physics](https://www.researchgate.net/profile/Nirbhav-Chopra), [26. People | Princeton Plasma Physics Laboratory](https://plasma.princeton.edu/people/emma-devin), [27. Women+ in Plasma Physics](https://www.pppl.gov/research/theory/people), [28. People - Laboratory for Plasma Nanosynthesis & Nanofabrication | Princeton Plasma Physics Lab](https://plasma.princeton.edu/women-plasma-physics),
[29. Frontier Plasma Science](https://nano.pppl.gov/people.html),
[30. Virtual Tour: Microelectronics - YouTube](https://www.pppl.gov/Discovery-Plasma-Science/frontier-plasma-science), [31. Yevgeny Raitses - Princeton Plasma Physics Laboratory](https://www.youtube.com/watch?v=xvYeK5vPdYs), [32. A confocal laser-induced fluorescence diagnostic with a ring-shaped laser beam](https://www.pppl.gov/people/yevgeny-raitses),
[33. Ahmed Diallo | Princeton Plasma Physics Laboratory](https://www.researchgate.net/publication/369449701_A_confocal_laser-induced_fluorescence_diagnostic_with_a_ring-shaped_laser_beam), [34. Ahmed Diallo - Princeton Plasma Physics Laboratory](https://www.pppl.gov/people/ahmed-diallo)